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We study a simple model for the statistics of neural spike trains as they encode 
a continuously varying signal. The model is motivated with reference to several 
recent experiments on sensory neurons, and we show how analogies between the 
relevant probabilistic issues in neural coding and statistical mechanics can be 
exploited. Results are given for the information capacity of the code, for the 
optimal structure of code-reading algorithms, and for the time delays which 
arise in optimal processing of the coded signal. In addition, we show how simple 
analog computations can be expressed directly in terms of transformations of 
the spike train. The rules for reading the code and for optimal analog computa- 
tion depend on the context for behavioral decision making--the relative weights 
assigned to different types of errors, the relative importance of different signals. 
We find that there is a conflict between minimizing this context dependence 
of the code and maximizing its information capacity; a compromise can 
be achieved by appropriate preprocessing (filtering) of the encoded signal. 
Experiments on auditory and visual neurons qualitatively confirm the predicted 
filtering. Similarly, the structure of the optimal "multiplier neuron" is shown to 
depend upon the intensity and spectral content of incoming signals, and these 
predictions compare favorably with experiments on a movement-sensitive cell in 
the fly visual system. 
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1. I N T R O D U C T I O N  

N e u r a l  i n f o r m a t i o n  p r o c e s s i n g  h a s  b e e n  r a t h e r  wel l  d e s c r i b e d  f r o m  a n  

e l e c t r o c h e m i c a l  p o i n t  o f  view. A " s p i k i n g "  n e u r o n  rece ives  i ts i n p u t  in fo r -  
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mation in the form of an electrical signal v(t) from the synaptic junctions 
on its dendrites, where v(t) denotes the instantaneous electrical voltage 
measured in suitable units. Its output consists of a train of spikes, occurring 
at time {ti}, traveling rapidly down its axon. The form of the spikes is 
independent of v(t). Rather, information about v(t) is encoded in the times 
{ti} themselves. (1) In this paper, we study neural information processing 
from an information-theoretic point of view. We are interested in several 
rather broad questions: 

a. Given that we observe a set of spikes {t~}, how much information 
have we obtained about the signal v(t)? How might one reconstruct this 
input signal (read the code)? How does one ensure that the rules for 
reading the code are not strongly dependent on the context for behavioral 
decision making? 

b. Let Vr(t) denote the signal reconstructed from spikes {ti}. Suppose 
that we reencode this signal in the spike train {ta} of a second neuron. 
How much information is lost in the process of encoding, decoding, 
and reencoding? This is just a formal question, since such simple 
decoding/recoding almost certainly never occurs in the brain, but this 
estimate of information loss should give us an indication of whether signals 
are significantly degraded as they pass through successive layers of cells. 

c. How can we perform simple analog computations on the spike 
trains, such as multiplying two signals v~(t) and v2(t) encoded in the firing 
of two neurons? 

To approach these issues theoretically, we require a model for the 
encoding of v(t) in the spikes {t~}. We present the experimental motivation 
for such a model, and in subsequent sections we take up issues a-c in turn. 

2. M O T I V A T I O N  FOR A S I M P L E  M O D E L  

In recent years considerable attention has been given to neural 
models (2) in which neurons flip between saturated states of maximal or zero 
firing, or where the pattern {ti} can be replaced by a continuous rate 
function which saturates at rather moderate stimulus intensities. In these 
models the fact that neurons fire discrete impulses is viewed only as 
contributing an effective noise level. It has been known for some time, 
however, that the timing of individual spikes and spike clusters can play a 
significant role in neural information processing, (3) and recent evidence 
from the fly visual system indicates that two or three spikes from one 
neuron encode essentially all of the sensory information available about 
sudden movements across the visual field. (4) Similarly, many of the cells 



Neural Spike Trains 105 

sensitive to sound source location in the inferior colliculus of the echo- 
locating bat Pteronotus parnellii fire at most five spikes in response to each 
returning echo, with some cells firing as few as one or two. (5~ Studies of 
primary neurons from a vibratory organ of the bullfrog inner car suggest 
that modulations of the firing rate are an essentially linear measure of 
stimulus amplitude over much of the behaviorally relevant range. (6) In 
auditory neurons of the mammalian ear the firing rate exhibits relatively 
soft saturation at 3 0 ~ 0  dB above the threshold of hearing in quiet, (7) but 
even this may be traced to saturation of the presynaptic signal (for review 
see ref. 8). In the mammalian visual cortex, many neurons exhibit nearly 
linear responses to spatial patterns with contrasts of up to 30 %, which is 
typical of many natural scenes. (91 

Taken together, these and other experiments suggest that we study 
models in which the information carried by individual spikes is not ignored 
or averaged away, and saturation of the neural response does not play an 
essential role. The lack of saturation implies that spikes are typically 
separated by intervals long compared to the electrochemical time scales 
which determine the maximum firing rate. In the limit that the interspike 
intervals are very long, the occurrence of one spike cannot influence the 
generation of the next, and neural firing becomes a Poisson process, where 
the probability of observing N spikes at times ti on the interval (0, T) given 
the signal v(t) is 

P[ { ti} lv(t) ] = l e x p  l-- ;~ dr r(r)] r(tl) r(t2) ..'r(tN) (1) 

with r(t) the rate function determined by v(t). Evidence for the near- 
Poisson character of neural firing has been found in the mammalian 
auditory nerve, (7'8' lo)and in retinal ganglion cells firing has been described 
as a Poisson process driven by the Poissonian arrival of photons at the 
retina and slightly modified by "dead time. ''(~1) The fact that the firing rate 
r(t) is always modulated by noise in presynaptic signal v(t) may account 
more generally for observed deviations from Poisson behavior, (12~ as seen 
below. 

The next issues concern the relationship between the spike rate R(t) 
and the signal v(t). One way of thinking about neural firing in the Poisson 
regime is that noise in the cell occasionally drives the voltage through the 
threshold for initiation of an action potential; successive spikes are then 
uncorrelated because the mean time between threshold crossings is long 
compared to the correlation time of the noise. The noise exists on top of 
some bias level determined by the mean current injected into the cell, and 
external signals such as v(t) modulate this bias. From the general theory of 
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threshold crossings in random signals one finds that the rate of crossing 
depends exponentially on the difference between the bias level and the 
threshold level, so we expect that the firing rate in the Poisson regime will 
also vary exponentially with the amplitude of the external signal. This 
prediction has been verified in simulations of realistic models for the electri- 
cal dynamics of spiking neurons. 3 These considerations suggest that a 
simple first approximation for the firing rate is r(t) = 2 exp[v(t)]. Note that 
even when there is no signal, v(t) = 0, there is some spontaneous firing rate 
2, as in real neurons. 

3. READING THE CODE 

The "exponential-Poisson" model has been applied previously to the 
study of neural coding and to the interpretation of statistical experiments 
on neural firing. (7'1~ Many of the general questions outlined above, 
however, remain to be answered. Our basic strategy is to note that every- 
thing we know about the signal v(t) by virtue of having observed the spikes 
{t,} is contained in the distribution P[v(t)l{ti}], as determined by Bayes' 
theorem 

PUv(t)l { t , } ] -P[{ t i }  lv(t)] Ply(t)] 
PE{ti}] (2) 

To evaluate this distribution, we need the a priori distribution for the 
signal, Ply(t)]. This is determined by the characteristics of the natural (or 
experimental) stimulus ensemble, suitably filtered by the response of the 
presynaptic cells. For simplicity we choose Ply(t)] to be that of stationary 
Gaussian noise, 

2x S(e~) [ (3) 

with 17(e~)=~ dt e+i~tv(t) and S(e;) the power spectrum. 
It is important to realize what this assumption about the a priori 

distribution actually means. To characterize a natural stimulus ensemble, we 
would, for example, record the waveforms of speech signals as spoken by 
a wide variety of speakers in different acoustic environments as they recite 
different texts or engage in typical conversation. Although any particular 
short segment of speech could hardly be considered "noiselike," if one 
averages over all the possible speech sounds one would find that the 
ensemble is essentially that of random signals with some correlation 

3 For a general discussion regarding the statistics of infrequent threshold crossings in 
Gaussian noise, see Rice. (13~ For simulations of realistic neural models, see Bialek et al. ~laJ 
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structure, perhaps well approximated by the power spectrum alone. 
Similarly, if one examines the structure of natural scenes, it is likely that 
the fluctuations in contrast as viewed through the aperture of a single 
photoreceptor or the receptive field of a single higher-order neuron are 
approximately Gaussian, with some spectral density reflecting the typical 
velocities of movement across the visual feld; some measurements of this 
type have been reported for natural image ensembles. (15) We recall also 
that a probabilistic description of the signal is necessary in an information- 
theoretic discussion, (16/ and of course the Gaussian approximation is the 
simplest starting point. It is worth noting that in laboratory experiments 
one can always choose the distribution of signals to be Gaussian, as in 
ref. 4. 

After much discussion, then, we have identified our problem: Our 
knowledge of the signal v(t) as derived from {t~} is summarized by 

P[v(t) j{ t i}]  p[{ t~}]N!exp  --2 dte~(')+ v ( t ' ) - 2 f  2r~ S(oo) J 
i = 1  

(4) 

It will be convenient to think of this distribution in terms of 
statistical mechanics or quantum mechanics, where P[v( t ) ]{ t , } ]~  
exp{ -A[v ( t ) ;  {t~}]} defines the effective action A for a particle in one 
dimension to take a trajectory v(t) while being "kicked" at the times ti. 

One approach to reconstructing v(t) from {t,} is maximum 
likelihood(17)--find the trajectory v(t) which maximizes P[v(t)l {t~}] or, 
equivalently, minimizes the effective action. This procedure is optimal 
under certain conditions, and evidently it corresponds to finding the classi- 
cal limit of our equivalent quantum mechanics problem. The extremal 
condition is 

f , r do) e-'~ N 
fi exp[v, ( t ) ]  + dt' v , ( t  ) J 27~ S(co) Y, 6 ( t -  t,) (5) 

i = l  

which we can solve iteratively for small v,(t): 

v,(t) = v(l)(t) + v(2)(t) + ... (6a) 

v(2)(t) = - x 12  f dt' K(t - t')[v(1)(t')] 2 (6c) 

2~z ). + ]-/S-(o0) 
(6d) 
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Thus, we see that, for small modulations in the firing rate, the reconstruc- 
ted signal can be obtained as ~v(1)(t) from the independent addition of 
contributions from each spike; as the modulation becomes larger, one must 
include correlations among spike pairs, triplets, and so on. 

It is easy to see that, if the signal-to-noise ratio is high IS(o))> 1/2], 
then Eq. (6) is a power series expansion in which v (1) itself serves as the 
expansion parameter. At lower signal-to-noise ratios the expansion 
parameter is smaller than v. (1) Issues of convergence are complicated; to be 
precise, we would have to discuss convergence in a probabilistic sense, 
since the signals are chosen randomly from some ensemble. While these 
issues are interesting, we feel it would be more profitable to view Eq. (6) 
as a natural approximation whose applicability to real neurons can be 
tested experimentally, as described below. 

It is clear from Eq. (6) that the kernel K(t)  is in general acausal--a 
spike at ti contributes not only to reconstruction of the signal v(t < ti), but 
also to prediction of the signal v(t > ti). This arises, of course, from correla- 
tions in the a priori ensemble Ply( t ) ]  as summarized in S(o)). To make use 
of all of the information available in the spike train, we must estimate v(t) 
only once we have arrived at time t + % ,  with K(t  > r e ) ~ 0 ,  so that no 
future spikes can influence our estimate: Optimal decoding introduces 
delays. 

How large is %? Suppose S(o)) is a Lorentzian centered at o)o (and 
-COo) with width F, 

S(o)) = V2ms (o) _ COo) 2 + F2 -t (co + COo) 2 + F2 (7) 

where 

l)r2ms = f DV t)2(t)PI-I)(I)] -~-- f dO) s(o) (8) 

Then we find that t c ~  ( F 2 +  Vr2ms/'2) -1/2, and with the parameters dis- 
cussed below this means that the decoding delays are roughly a few 
milliseconds. This is comparable to the delay at a single synapse, (1) which 
is often cited as limiting the speed of neural computation. Here we see that 
such delays are required for optimum decoding independent of the synaptic 
hardware. More precisely, we have a model in which the firing rate r(t) 
instantaneously follows the presynaptic signal v(t), so the synaptic delay is 
explicitly taken to be zero; nonetheless, the speed of processing is limited, 
essentially by the structure of the stimulus ensemble itself. 

We emphasize that our conclusions about the need for delays in 
optimal decoding are in the spirit of the need for delays in higher-order 
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processing--to understand spoken words it helps to wait until the end of 
the sentence. It is interesting, however, that this consideration applies at 
every individual stage of neural coding and processing. To continue with 
the case of speech, there are delays necessary in interpreting and processing 
the primary auditory nerve's encoding of the sound pressure waveform, 
long before any of the elements of speech might be recognized in higher 
brain centers. 

Returning to the estimation problem, it should be appreciated that 
maximum likelihood is not always the optimal strategy. In general, one 
must make full use of the distribution P[v(t)l{ti}], with different features. 
emphasized, depending on the costs and benefits in any specific task. It is 
reasonable to ask that, in a "good" code, reasonable changes in this 
behavioral context do not lead to large changes in the rules for reading the 
code. This is essentially guaranteed if the distribution Ply(t)] {ti}] has 
a single well-resolved maximum, which is the same as asking that our 
equivalent quantum mechanics problem actually be in its classical or 
correspondence principle limit. 

It is well known that the difference between classical and quantum 
mechanics (or mean-field theory and the exact statistical mechanics) can be 
seen in a diagrammatic formulation of perturbation theory in terms of the 
loop diagrams. In Eq. (4) we expand the exponential in a power series and 
write the effective action as 

AEv(t); {t~}]=zjl ~dt f dt' v(t)K l(t--t')v(t') 

+ f dt Fext(t ) v(t) + Aint (9) 

where K 1 is the operator inverse to K(r), Fext is an "external force" 

N 

Fext(t) = "~ -- E ~(t -- t,) (10) 
i = i  

and the interaction term is 

A i m = ) . f d t  ~ Vn(t) (II)  
n=3 n! 

As usual, we develop a perturbation series in Ain t. The simplest test of the 
classical approximation is to look at the one-loop correction to the 
propagator K: 

K-l(co) = 2 + 1/S(e))-~ 2 + de) 1 
2~ 2 +  US(e)) (12) 
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These "quantum-corrected" propagators have a straightforward interpreta- 
tion. If we try to reconstruct the stimulus by computing the average 
waveform rather than the most likely (as above), we find that the 
reconstruction strategy has a form similar to that of Eq. (6), but the bare 
propagators K are replaced by the quantum dressed versions. To demand 
that quantum corrections be small is thus to demand that the average 
waveform be close to the most likely waveform, which is one way of saying 
that the distribution has a smooth, well-resolved maximum. 

We evaluate the loop integrals in a simple picture where the spectral 
density S(co) is nonzero only over a limited range of frequencies having 
width Am. Then we find that the one-loop self-energy term in Eq. (12) is 
just (Aco/n)/(1 + z) with z = A~/rc2vZms . Thus, the "quantum corrections" to 
the propagators, and hence the context dependence of the code, is mini- 
mized by narrowing the bandwidth A~o; we have checked that this is true 
for higher loop terms as well. 

4. I N F O R M A T I O N  C A P A C I T Y  A N D  " N E U R A L  N O I S E "  

We now turn to determining the information coded in {ti}, which, 
following Shannon, (16) we write as 

P[vlt] (13) IEO = ,  It? log2 
Ply-----I- J 

where I is in bits and we suppress the curly bracket around t and the 
subscript i. While we can calculate directly with this expression, we would 
like to show how to manipulate it into a more compact form: 

P[tlvl c 
I[t] =| Dv P[vlt] log 

P[ t----j- J 

= - l o g  P[t] + f Dv P[v lt] log P[tlv] (14) 

But Pit] =~ Dv P[tIv] Ply], so 

Dv P[t Iv] P[v] log Pit Iv] 
/ [ t ] =  - logfDvP[t lv]eKv]+ fOvP[tlv]P[v] (15) 

which may be written as 

I [ t ] =  - ( 1 - ~ ) A ( t ,  r/)],= 1 (16a) 

A(t, t/) = log f Dv(P[tlv])~ BEy] (16b) 
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This last manipulation has the flavor of the replica trick used in the statisti- 
cal mechanics of disordered systems. 

We are able to evaluate Eq. (16) once again as an expansion in Urms; 
the lowest-order result is 

' f f  J I [{ t ,}]  2--~n2 dt dt'F~t(t) F~xt(t') dcoe ,,,~u c)s(co ) 
= 2re [ I  + , ~ . s ( o ~ ) ]  2 

T_T__fdCO(ln[l+2S(co) ] )oS(co) ~ 
+ 2 1 n 2  2~ 1 + ~--coi] (17) 

with Fext(t) as before. When we average over the spike arrival times ti we 
find the mean information rate 

R=(I[{ti}])_ 1 f-~-In[l+)~S(co)] (18) 
T 2 in 2 zlt 

This is just Shannon's formula (16) for the information capacity of a com- 
munication channel in which the signal has a power spectrum S(co) and the 
effective noise is white with spectrum 1/2, which gives a simple intuitive 
picture of the "neural noise." 

If S(co) is concentrated in a bandwidth Am as above, then 

R ~ (),V2ms/2 In 2) z ln(1 + 1/z) 

Clearly, this is maximized by letting z --+ 0% and hence Am --+ oo. Evidently 
the conditions for high information capacity and context independence are 
conflicting. In these cases one is saved only by the fact that the context 
dependence (measured above as the difference between most likely and 
average waveforms) scales as z for small z, while the information capacity 
behaves as z ln  [zl. This means that we can cut the context dependence 
quite a bit while paying relatively less in information capacity. Although a 
detailed analysis requires assigning a numerical "value" to context inde- 
pendence, it is clear that for rapidly firing cells the optimal compromise will 
be reached at z < 1--moderately narrow bandwidths. 

To summarize, by filtering incoming signals, the presynaptic cell can 
reach an effective compromise between maximal information capacity and 
minimal context dependence of the code. The precise nature of the filtering 
required depends on the firing rate, and indeed, as the firing rate changes 
(perhaps by increasing the rms stimulus level), the filters would have to 
adapt to maintain optimality. In general this filtering strategy requires an 
array of cells tuned to different frequency bands, and this is exactly what 
one has in the mammalian auditory system, (8) where firing rates are 
2 ~ 100 sec l and, at low sound pressures (Vrms < l ) ,  AOo/2~ < 100 Hz. In 

822/59/1-2-8 
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the mammalian visual system one has arrays of cells tuned to different 
spatial frequencies, ~ but since images are always moving across the retina, 
this amounts to filtering in the time domain as well. The optimal 
bandwidth varies with stimulus level, both explicitly through Vrms and 
implicitly through 2, and this is what one observes for the actual 
bandwidths in the auditory system. (8) We emphasize that our comparison 
with experiment is necessarily qualitative, but it does seem that the 
theoretical criteria we have explored are in reasonable agreement with 
observation. 

As mentioned in item b in the Introduction, we are interested in infor- 
mation transmitted in a two-stage process v--+ {ti} --+ vr--+ {G}. We have to 
determine the convoluted probability 

N = O  

x P [ { G } I { ]  6[{(t)-vr(t; {ti})] rK{t,}lv(t)] (19) 

where we have emphasized that vr depends on the {ti}. As before, we are 
able to evaluate this expression only as a series for small v,. Remarkably, 
the lowest order result may be arranged in a rather simple form: 

2a~ p [ { t a } IV ( t ) ] =N [v ]~ .  " f i  eV'(t~)I-le(I/2},a.L(ta tb) (20) 
a =  1 a b  

where 
,L 

~7'(co) = ,L + 1/S(co)" ~(co) (21a) 

L ( t ) _ f d m  e ioo, 
- -  2 / g  1- ~, -~-- 17~(,0 ) ] 2 (21b) 

and N[v] denotes a suitable normalization factor. 
Were it not for the presence of the factor involving L(I), which 

measures the correlation among the G, PF{ta}]Vl would have been 
Poisson as in Eq. (1). However, the "would-be" Poisson distribution is not 
controlled by v(t), but by v'(t), a filtered version of v(t). The correlations 
L(t) may be thought of as arising from a "fictitious" noise added to v'(t); 
averaging over this noise induces the interspike correlation. More 
explicitly, let the effective signal be v ' ( t )+ q(t), with •(t) a Gaussian noise 
term. Averaging the Poisson distribution over the noise, we find 

a a b  

(22) 
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Comparing with Eq. (20), we identify (tp(ta)~(tb))= ;tL(ta- tb). Undoing 
the filtering by L(z), we see that this fictitious noise is equivalent to a noise 
in v(t) having spectral density 1/2, in agreement with our interpretation of 
the information capacity above. 

5. M U L T I P L I E R  N E U R O N S  

Finally, we comment on the multiplication problem c. If the encoding 
of the signals vl(t) and Vz(t ) is reasonably reliable, then the optimal 
estimate of their product can be obtained by first estimating the two signals 
individually and then multiplying. As the noise level increases, there are 
corrections to this simple algorithm, but they do not affect the qualitative 
points we would like to make here. In terms of the two spike trains, a 
"multiplier neuron" should compute 

Vl(t)v2(t)~fd'clfd'r2K(t-'cl)K(t-'c2) 3('C1--/I 1)) 
. =  

J = l  

Thus, there are terms which approximate naive "coincidence detection" 
~3(t-t111) 3(t-t~2)), but true coincidence detection is not optimal. The 
optimal multiplier neuron evidently encodes a signal formed by smoothly 
weighting all of the near-misses to coincidences between the spike trains. 
Put another way, apparent sloppiness in the detection of coincidences may 
actually reflect optimal multiplication. 4 

It is clear from Eq. (23) that the multiplication process, like the 
reconstruction algorithm discussed above, is acausal. Again this means that 
any real multiplier neuron must have an output which lags the true signal 
if we are to make full use of the available information. What is significant 
here is that the magnitude of this lag (see above) depends on the intensity 
of the signal Vrms- Thus, we expect that an optimal multiplier or correlator 
neuron would have a temporal impulse response which adapts to changes 
in stimulus ensemble, quickening as the signal strengthens. If the fly visual 
system there is a movement-sensitive cell whose behavior has been 
described quite accurately as a spatiotemporal correlator, and recent 
experiments demonstrate that the impulse response of this cell quickens at 
increasing movement velocities, just as we expect. (2~ 

4 This may have significant consequences for experiments on the neurophysiology of binaural 
acoustic processing, where cross-correlation (delayed multiplication) is believed to play a 
central role (e.g., ref. 18), although one often talks about coincidence detection. Similar 
comments apply to electroreception in fish. (19) 
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6. D I S C U S S I O N  

To summarize, we have studied a very simple model of neural 
encoding which nonetheless has some support in experiment. We find that 
this model already has a number of important consequences: the need for 
time delays in optimal processing; the use of presynaptic filtering to remove 
context dependence of the code and optimize the information capacity; the 
role of "sloppy coincidence" in analog computation; and the need for 
adaptive filtering. Some of these results seem to have clear experimental 
correlates. One of the most important conclusions is that, under certain 
conditions, it should be possible to literally decode the neural spike train, 
recovering the optimal estimate of the incoming stimulus, using a simple 
linear filter. If it is really true that spike trains can be converted back to 
analog signals by simple filters, then it may be possible to understand 
analog computation in the nervous system using very simple models, in the 
spirit of our discussion of multiplier neurons. 

Although neural coding has been studied for roughly 50 years, we 
know of no instance in which a systematic decoding of the spike train has 
been attempted, so our prediction that such decoding should be possible by 
such simple means comes as quite a surprise; for a review see ref. 4. Since 
we first obtained this result it has been possible to mount an experimental 
test, and our prediction has been confirmed. (21) 

The motivation for many of our arguments is some principle of 
optimization, such as finding the best estimate of the stimulus given an 
example of the spike train. To the extent that theoretically optimal 
strategies predict the behavior of real neurons, these optimization prin- 
ciples should be viewed as having relevance to the "design" of the nervous 
system. There exist several examples (22) of sensory systems whose functions 
have been optimized by evolution, such as the ability of the retina to count 
single photons, and so it seems reasonable to search for comparable 
optimization principles in neural coding and computation. 
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